

Digital Functional Test Module R&S®TS-PDFT

High-speed 32-bit digital pattern I/O and serial communications interfaces

- 32 digital output channels in four groups
- Pattern rate 20 MHz
- One programmable output level per group
- High output current
- Short-circuit protection
- Stimulation of digital realtime data, streams with variable bus width
- Four high power open drain channels, fully protected, capable of pulse width modulation
- Five relay channels SPST

- 32 digital input channels in four groups
- Two programmable input threshold levels per group for hysteresis or level monitoring
- Acquisition of digital realtime data streams with variable bus width
- Overvoltage protection
- Serial communications interfaces — CAN 2.0b high-speed
 - CAN 2.0b low-speed, fault-tolerant
 - RS-232-C / K bus
 - -SPI bus emulation (master)
 - —I²C bus emulation (master)

- Local microprocessor
- For time-critical tasks independent of the operating system used
- Synchronization via PXI trigger bus
- Software front panels for immediate use
- Selftest software
- LabWindows/CVI device driver support
- Test software library GTSL in DLL format

Product introduction

The Digital Functional Test Module R&S®TS-PDFT is a CompactPCI/PXI module which takes up only one slot in the R&S®CompactTSVP (Test System Versatile Platform). The module contains very flexibly programmable 32-bit digital inputs and 32-bit digital outputs which are able to acquire or stimulate static or dynamic digital patterns. The characteristics of the digital lines can be configured in 8-bit ports. Furthermore, the programmable levels of the output ports can be adjusted to the application requirements, and the input ports have a programmable threshold and hysteresis to match the specifications of common digital logic families.

The synchronization to digital communications, handshake signals and analog measurement tasks is provided via trigger lines accessible at the front connector or via the PXI trigger lines. Additionally, the module can generate triggerpulses derived from digital pattern comparisons and perform change detection at the input ports.

The scope of the R&S®TS-PDFT's digital I/O capabilities is supported by the on-board microprocessor which can provide various communications interfaces, especially suited for automotive applications.

The simulation of the DUT's environment is simplified by providing floating relays to switch supply voltages or loads to the DUT. With four additional power-output channels that can be pulse-width-modulated, digital control signals with up to 1 A can be applied to the test setup via open drain switching outputs.

The digital channels are equipped with protection circuits and signal conditioning features to use the Digital Functional Test Module R&S®TS-PDFT as a robust device for various tasks in automatic test equipment (ATE), thus covering a wide scope of measurement and control objectives.

Typical applications

The Digital Functional Test Module R&S®TS-PDFT can be used in all test and measurement scenarios where simple or complex digital circuits have to be tested by static or dynamic digital patterns. The feature of DUT programming in production provides a very efficient approach to testing and uploading firmware to the DUTs in one step in the test process.

For many applications, realistic simulation of the DUT's environment during testing is most important.

The R&S®TS-PDFT therefore offers deterministic generation and simultaneous acquisition of digital patterns at high data rates. This includes both tristate control and the implementation of bidirectional buses by configuring portwise connections of input and output lines by software. These test setups can be even operated in correlation with a realtime communications path based on standardized interfaces. For automotive ATE, the most common interfaces are SPI, I²C, CAN, K bus or RS-232-C which are supported by the R&S®TS-PDFT.

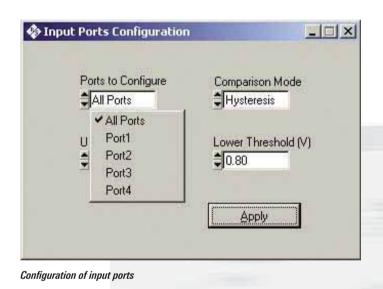
Further applications are related to various programming tasks that have to be performed by state-of-the-art board test systems. The R&S®TS-PDFT can handle most common programming procedures for downloading to flash memories and transferring data streams to on-board memory.

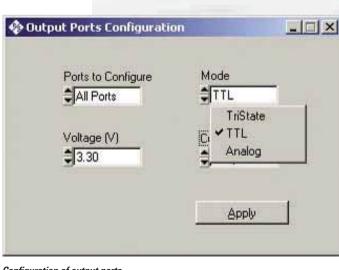
The on-board computing power provides firmware-implemented communications protocols and supports communications tasks that are time-critical or that need realtime response independently of the operating system that is running on the R&S®CompactTSVP's system controller.

A sophisticated set of trigger setups provides flexible synchronization to DUT signals or synchronizes to multiple R&S®TS-PDFT modules, Rohde & Schwarz measurement modules or commercially available PXI modules via the standardized PXI trigger bus.

Typical applications include:

- Digital functional test
- Interfacing to digital communications
- Downloading to flash memories
- Deterministic stimulation and acquisition of digital data streams
- Digital I/O control
- Simulation of digital bus lines


Flexibility


The design of the module offers expanded flexibility for various application scenarios and high-speed pattern I/O. The programmability of the digital I/O interfaces enables the module to meet a wide range of requirements regarding data transfer, communications and trigger settings. The features are contained in the free software front panels and are available for immediate use.

The programmable output levels and input threshold levels of the configurable ports ensure compatibility with future generations of digital components. To improve noise immunity in test environments, the hysteresis of the input channels can be configured groupwise.

If a higher number of digital I/O lines is required, multiple R&S®TS-PDFT modules can be synchronized within the system or synchronized with other types of measurements via the PXI trigger bus.

To simplify update procedures, the firmware for the microcontroller and the onboard FPGA design can be easily downloaded. This allows the R&S®TS-PDFT's firmware to be upgraded with new functionalities or enhancements.

Configuration of output ports

Software support

A LabWindows/CVI driver for standardized device operation is available for the R&S®TS-PDFT. Function panels and online help are available as common features for the LabWindows/CVI driver.

The definition and evaluation of complex digital test scenarios are supported by the Rohde & Schwarz GTSL (Generic Test Software Library) software including the DIO manager.

A set of software front panels makes it easy for users to learn the module's various functionalities. The software front panels also include features for evaluating serial communications protocols. This allows users to evaluate test setups simply by using test panels rather than by means of programming.

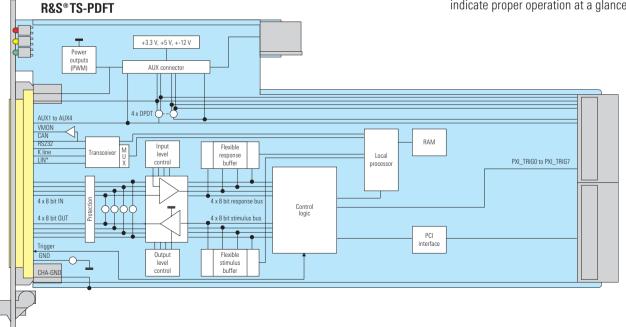
SCL Channel SD	A Channel Baudrate	-	
Bus Free Timeout / μs ≱10000	SCL Low Timeout / μs €10000	<u>C</u> onfigure I2C	
Addressing Mode 7 bit 10 bit Data (hexadecimal)	Slave Address (hex)	Timeout / ms	
12E0A2006BADF00D		Send	
Addressing Mode 7 bit 10 bit	Slave Address (hex)	Timeout / ms	
Data (hexadecimal)		Bytes to Read	
1 		<u><u>Beceive</u></u>	

1	Con	. gar	18 ¥	curcy	Help	6																									
jital	l Stir	nulus	Patt	ern C	hann	el																									
1	6	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
-																															
Ĵ		Conn	ect II	100.	F(18	1			П	Cor	nnecl	INO	UT[9.	.16]			F	Conn	ect II	NOUT	F[17	24]			Г	Cont	nect II	NOUT	٢[25	32]	
ī		-																													
л 1991	Dec.	spons	- Del						here and	<u></u>					0. 111											<u> </u>				10 C.C.	
943	10.000	100.00	34.97	028665																											
		- Ch-	0- D	- 11	1																										
Exe	ecut	e Sta	tic Pa	atterr	Name of Street, or Str																										
			tic Pa	atterr											bie la			200	55.855	2010				3777.2		1000		11 N. 1 1 1 1 1 1			
		e Sta ays	tic Pa	atterr	A. I.		1		is Fu						Stim	ulus E	lits	Dyn.	Stim	Patte	ern (H	ex)		Re	spons	se Bit:	s C)yn. F	lesp	Patteri	n (He
	Rel	ays	-	atterr	hund	S	tart <u>d</u> y	nam	iic Ex	ecutio	on						lits	Dyn.	Stim	Patte	ern (H	lex)			32-	se Bit:	s C)yn, F	lesp	Patteri	n (He
	Rel	ays AU:	<1	attern		S	tart <u>d</u> y	nam	iic Ex	ecutio	on				31	2- 6-	lits	Dyn.	Stim	Patte	ern (H	lex) I			32- 16-	se Bit:	s C [)yn. F	lesp	Patteri	n (He
	Rel	ays	<1	atterr		S	tart <u>d</u> y	nam	ic Ex	ecutio	on				31	2- 6- 8-		Dyn.	Stim	Patte	ern (H	lex) E			32- 16- 8-		s C)yn. F	lesp	Patter	n (He
	Rel	ays AU: AU>	<1 <2	atterr		s					on				31	2- 6-		Dyn.	Stim	Patte	ern (H	lex) I			32- 16-		s C)yn. F	lesp	Patteri	n (He
	Rel Г Г	ays AU AU AU	<1 (2 (3	attern		s			iic Ex timDa		n				3 1 nor	12- 6- 8-	e s E	Dyn.	Stim	Patte	ern (H	ex)		no	32- 16- 8- ne-)yn. F	lesp	Patteri	n (He
	Rel Г Г	ays AU: AU>	<1 (2 (3	attern		s	Lo	adSi	timD a	ła	on 			St	3 1 nor	2- 6- 8-	e s E	Dyn.	Stim	Patte	ern (H	lex) I		no	32- 16- 8- ne-)yn, F	lesp	^D atteri	n (He
0.000	Rel Г Г	ays AU) AU) AU) AU)	<1 <2 <3	attern		s	Lo	adSi		ła	on 				3 nor im De	12- 6- 8-	e s E	Dyn.	Stim	Patte	ern (H	ex)		no Resi	32- 16- 8- one-)yn. F	lesp	Patteri	n (He
	Rel	ays AU) AU) AU) AU)	<1 <2 <3	atterr		S	Lo	adSi	timD a	ła	on]			4	3 nor im De	12- 6- 8- 1e-	s)	Dyn.	Stim	Patte	ern (H	lex) I		no Resj	32- 16- 8- p Del	J ay (ns	1)yn. F	lesp	Patteri	n (He
	Rel	ays AU) AU) AU) AU)	<1 <2 <3	atterr			Lo	adSi	timD a	ła	on			4	3 nor im De	12- 6- 8-	s)	Dyn.	Stim	Patte	ern (H	ex) I		no Resj	32- 16- 8- p Del		1)yn. F	lesp	Patter	n (He
0.000	Rel	ays AU) AU) AU) AU)	<1 <2 <3	atterr			Lo	adSi	timD a	ła	on			S	3 nor im De	12- 6- 8- 1e-	s)	Dyn.	Stim	Patte	ern (H	lex) I		no Resj	32- 16- 8- p Del 5 p Peri	J ay (ns	1)yn. F	lesp	Patteri	n (He

Static digital I/O loopback

3	let		10	-	? 🧶	C.A	10 1	Po =	MyProject	g		•	۰	\$ 40	* 3	0.0	18 8	精部	101
14	Maste	r Tine Bac	14.5	Int		• Porter	-	42.03 s	In	terval.	- 24	2.03 :	5ter	t)	0 pt	-	End	131	07 s
A 9E		Name	Value at 14.3 ns	0 ps 9 nt	8151	16,30 1	24,581	271	40,95 ±	43,75 x	57,341	65.54 s	7373 1	81,921	30,11 r	38,31	106.5 ±	114,651	122,68 1
Q	UP.	fei	8.0		THE OWNER WAT	C.D. C.D.			and the second	interest interest	production .							matarin	
	10	In2	8.0	1				1111						111					
	120	let3	B 0	INNI	ntnintri	FINANA	tinnann)	nonhanan	anananana	inaphani	innann	nonnanna	natanan	agnangn	INNARIAN	Equipping	nonnan	nannnha	Interanting
44	11	In4	B.0							TIL			1			TTL			ЦГ
4	102	in5	8.0																
)(Ü	1	Infi	BO									114	Л	III					
四茶已	10	In7	B 0		_ 199	89884	0090809	10000	1 1 1 1 1 1 1 1	8		增					00		
0	12	In8	8.0		10	nn	1011	UII		I. Lake	111	1.1.1.1.1.1.1.1	a du da	distant.		and the state	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Sec. 1.
	0	Out1	0.0			a statement		100			10.00			10.0		100	1.		
Ŷ.	0	0w2	B 0	J.L.S.	وأنتأور		and the	al a		Julia	Sec.	history	and the second			in the second			in his with the
<u>z</u>	0	0.42	8.0	nana	nonprin			nnanann	antrantan	inninini	n hatan		nnannan	nanan	nnaanna	aduan na a	nnannan	nannnn	Infrantin
况	9	0,44	B 0			1	LIT	THE					44	1-1-5					1-1
地区地区器	2	0.45	B 0				-			-		-				-	-		
洒	0	Out6	8.0				11.11	144					п	F	-	11111	et a te	1.44	
XE	9	0ut7	B 0		1		DC	p	L RUDO	3		O					(00)	-	_
1942	2	10ut8	8.0		110	nru	VII	UIII					11.11			1 N		1111	

Quartus II software for creating and displaying digital stimulation patterns


The Quartus[®] II Web Edition software from Altera[®] is a highly sophisticated tool for creating programmable logic designs. It also provides a convenient means of generating digital pattern sets and is also suitable for visualizing digital patterns that were acquired using the R&S[®]TS-PDFT. Waveform data can be loaded into and retrieved from the module's on-board memory by means of driver functions provided by the DIO manager library, which is part of the Rohde & Schwarz GTSL software package.

The driver functionality also covers the synchronization of multiple modules and pattern sets.

Security through selftest and diagnostics

The built-in selftest capability of the module and the related selftest application ranges from fast diagnostics to the complete, automated evaluation of output levels, trigger lines and all switching paths.

Diagnostic LEDs on the module front panel speed up system integration and indicate proper operation at a glance.

Block diagram of the Digital Functional Test Module R&S® TS-PDFT

Specifications

Application in R&S®TSVP platform	
R&S [®] CompactTSVP	1 slot required
Interface	·
Control bus	CompactPCI/PXI
DUT connector (front)	DIN 41612, 96 pins
Rear I/O connector	CompactPCI, 110 pins
Data input channels	
Channels	32, in 4 groups of 8 bits
Input modes 1)	hysteresis
input modes ?	comparator
Input level	-5 V to $+12$ V
	clamping if outside range
Input thresholds 1)	two programmable thresholds
	0 V to +9.5 V at 12-bits resolution
Input resistance	1 MΩ
Realtime acquisition	
Sample rate	0.01 Hz to 20 MHz with 25 ns
Trigger delay	resolution 0 s to 100 s with 25 ns resolution
Trigger delay Data buffer depth / width	131071 samples at 8 bits (IN 1 to 8)
(programmable)	65535 samples at 16 bits (IN 1 to 16)
	32768 samples at 32 bits (IN 1 to 32)
Protection	overvoltage protection ± 42 V
	(max. 60 V <30)
Data output channels	
Channels	32, in 4 groups of 8 bits
Output modes	TTL, analog, tristate
TTL output mode 1)	
Output voltage	$V_{0H} = max. +3.3 V$
	$V_{_{OH}} = typ. +2.5 V at 20 mA$ $V_{_{OH}} = typ. +0.8 V at 20 mA$
Output current	$v_{0L} = typ. +0.6 v at 20 mA$ max. 80 mA
Analog output mode 1)	
Output voltage	–3 V to 10 V
Output current	max. 150 mA per channel,
	10 mA to 700 mA per group ¹⁾
Output resolution	12 bits
Tristate control output mode	0000
Output voltage	none
Output registance	tup 20 O
Output resistance	typ. 39 Ω
Realtime stimulation ¹⁾ Sample rate	0.01 Hz to 20 MHz at 25 ns resolution
Trigger delay	100 ns to 100 s at 25 ns resolution
Data buffer depth / width	131071 samples at 8 bits (OUT 1 to 8)
(programmable)	65535 samples at 16 bits (OUT 1 to 16)
	32768 samples at 32 bits (OUT 1 to 32)
Tristate control	programmable, per sample
Implementation of bidirectional data	portwise connection of data output
buses	with data input channels via on-board
Protection	analog switches short circuit
HOUGUIUII	reverse voltage up to ± 42 V at 150 mA
Power output channels	

Channels	4, open drain
Maximum switching voltage	+45 V
Maximum switching current	1 A per channel
Pulse width modulation (PWM)	1 Hz to 40 kHz at 0 % to 100 % duty cycle
Protection	short circuit, overvoltage, overtemperature
Relay channels	
Channels	4, SPST, floating 1, SPST, to ground
Maximum switching voltage DC/AC	60 V/42 V rms
Maximum switching current DC/AC	1.5 A / 1.5 A rms
Maximum switching power DC/AC	100 W / 100 VA
Communications interfaces	
CAN interface	
Channels Modes Termination TX objects RX objects Cyclic TX messages	1 (microprocessor, full CAN) CAN 2.0B active, 11/29-bit identifier low-speed, fault-tolerant (ISO11519-2) up to 125 kbd, transceiver TJA1054 high-speed (ISO11898) up to 1 Mbd, transceiver PCA82C251 programmable 4, Software-FIFO-buffered 11, programmable filters, Software- FIFO-buffered 2, independent frame bursts, Soft- ware-FIFO-buffered, programmable cycle time
Asynchronous serial interface Channels Modes Transfer rates Data formats	1 (microprocessor, UART) RS-232-C, K bus, TTL (uses XTI and XTO) 110 bit/s to 115 bit/s 1 start bit 7 data bits with even/odd parity 8 data bits with/without even/odd parity 9 data bits 1 or 2 stop bits
SPI interface Channels Modes Transfer rate Data formats	emulation of bus master via data channels used outputs: 3 (CLK, MOSI, CS) used inputs: 1 (MISO) 4 100 bit/s to 300 kbit/s 1 bit to 32 bit
I²C interface Channels Modes Transfer rate	emulation of bus master via data channels ²⁾ outputs used: 2 (I ² C_SCL, I ² C_SDA) inputs used: 2 (I ² C_SCL, I ² C_SDA) 7-bit and 10-bit addressing 50 bit/s to 300 kbit/s
Pattern comparator	
Comparison	32-bit data input channels with 32-bit reference pattern 32-bit comparison enable mask

Application Frequency measurement ³⁾ Maximum input frequency Minimum pulse width Frequency resolution Measurement time Trigger	12.5 MHz at 50% duty cycle 40 ns 25 ns 100 s to 160 ns gate time or up to 65534 comparator matches software trigger
Application	
Event counting ³⁾ Minimum pattern duration Gate time Event counts	40 ns 100 s to 160 ns up to 65534
Application trigger generator	output to PXI trigger, XTO
Realtime control unit	input to trigger units
	ST10F269
Local microprocessor	16-bit 40 MHz 2 Mbyte RAM
Synchronization	
Trigger units	2, fully independent hardware trigger logic
Applications	programmable trigger generator generation of realtime stimulation clock generation of realtime acquisition clock frequency measurement
Trigger unit characteristics ⁴⁾	2, fully independent hardware trigger logic
Input signals	1, local TTL trigger (XTI) 8, PXI trigger bus
Poforonao pottorn	1, pattern comparator
Reference pattern Slope	10-bit, 3 states: high, low, don't care positive / negative
Delay	40 ns to 100 s
Output signals	trigger received signal (25 ns pulse) trigger active signal (start of trigger until burst end)
	sample pulse (25 ns pulse for each sample)
Synchronization outputs	
Channels	1, local TTL trigger (XTO)
Signals ⁵⁾	8, PXI trigger bus output trigger unit 1 (IT1) output trigger unit 2 (IT2) output pattern comparator input signal (XTI)
	input signal (ATI)

General data

+3.3 V/0.5 A, +5 V/1.6 A, +12 V/0.4 to 2.4 A, -12 V/0.1 A
compliant with EMC directive 89/336/EEC and EMC standard EN 61326
CE, EN 61010 Part 1
5 Hz to 55 Hz: 2 g, MIL-T-28800D, class 5, 55 Hz to 150 Hz: 0.5 g, MIL-T-288800D, class 5
10 Hz to 300 Hz, 1.2 g
40 g, MIL-STD-810, classes 3 and 5
+5 °C to +40 °C
0 °C to +50 °C
-40°C to +70°C
+40 °C, 95 % rel. humidity
316 mm \times 174 mm \times 20 mm
0.37 kg

¹⁾ programmable per group.
²⁾ external diodes and pull-up resistors required.
³⁾ uses one trigger unit.
⁴⁾ programmable per trigger unit.

⁵⁾ selectable per synchronization channel.

Ordering information

Designation	Туре	Order No.
Digital Functional Test Module	R&S®TS-PDFT	1143.0080.02
Open Test Platform R&S®CompactTSVP	R&S®TS-PCA3	1152.2518.02

More information at www.rohde-schwarz.com (search term: TS-PDFT)

www.rohde-schwarz.com

Europe: Tel.: +49 1805 12 4242, e-mail: customersupport@rsv.rohde-schwarz.com · USA: Tel. +1 410-910-7988, e-mail: customersupport@rsa.rohde-schwarz.com Asia: Tel. +65 68463710, e-mail: customer-service@rssg.rohde-schwarz.com